Button

PGT Physics MP Varg 1

Physics Formulas for MP Varg 1

Physics Formulas for MP Varg 1

1. Physical World and Measurement

  • \( \Delta a = |a_{\text{measured}} - a_{\text{true}}| \)
  • \( \frac{\Delta a}{a} \)
  • \( \frac{\Delta a}{a} \times 100\% \)
  • \( \Delta Z = \Delta A + \Delta B \)
  • \( \frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B} \)
  • \( \frac{\Delta Z}{Z} = n \frac{\Delta A}{A} \) (for \( Z = A^n \))

2. Kinematics

  • \( v = u + at \)
  • \( s = ut + \frac{1}{2}at^2 \)
  • \( v^2 = u^2 + 2as \)
  • \( s_n = u + \frac{a}{2}(2n-1) \)
  • \( \vec{v}_{AB} = \vec{v}_A - \vec{v}_B \)
  • \( T = \frac{2u \sin\theta}{g} \)
  • \( R = \frac{u^2 \sin2\theta}{g} \)
  • \( H = \frac{u^2 \sin^2\theta}{2g} \)

3. Laws of Motion

  • \( F = 0 \implies a = 0 \)
  • \( \vec{F} = m\vec{a} \)
  • \( \vec{F}_{AB} = -\vec{F}_{BA} \)
  • \( f_s \leq \mu_s N \)
  • \( f_k = \mu_k N \)
  • \( F = \frac{mv^2}{r} = m\omega^2 r \)
  • \( \omega = \frac{v}{r} \)

4. Work, Energy, and Power

  • \( W = \vec{F} \cdot \vec{s} = Fs \cos\theta \)
  • \( KE = \frac{1}{2}mv^2 \)
  • \( PE = mgh \)
  • \( PE = \frac{1}{2}kx^2 \)
  • \( W = \Delta KE \)
  • \( KE_i + PE_i = KE_f + PE_f \)
  • \( P = \frac{W}{t} = \vec{F} \cdot \vec{v} \)

5. Motion of System of Particles and Rigid Body

  • \( \vec{r}_{cm} = \frac{\sum m_i \vec{r}_i}{\sum m_i} \)
  • \( \vec{v}_{cm} = \frac{\sum m_i \vec{v}_i}{\sum m_i} \)
  • \( \vec{\tau} = \vec{r} \times \vec{F} \)
  • \( \vec{L} = \vec{r} \times \vec{p} \)
  • \( I = \sum m_i r_i^2 \)
  • \( I = \frac{2}{5}MR^2 \)
  • \( I = \frac{2}{3}MR^2 \)
  • \( I = \frac{1}{2}MR^2 \)
  • \( I = \frac{1}{12}ML^2 \)
  • \( \omega = \omega_0 + \alpha t \)
  • \( \theta = \omega_0 t + \frac{1}{2}\alpha t^2 \)
  • \( \omega^2 = \omega_0^2 + 2\alpha \theta \)
  • \( \tau = I \alpha \)

6. Gravitation

  • \( F = \frac{G M_1 M_2}{r^2} \)
  • \( U = -\frac{G M_1 M_2}{r} \)
  • \( g = \frac{GM}{R^2} \)
  • \( g_h = g \left(1 - \frac{2h}{R}\right) \)
  • \( g_d = g \left(1 - \frac{d}{R}\right) \)
  • \( v_e = \sqrt{\frac{2GM}{R}} \)
  • \( v_o = \sqrt{\frac{GM}{r}} \)
  • \( T = 2\pi \sqrt{\frac{r^3}{GM}} \)

7. Properties of Bulk Matter

  • \( \sigma = \frac{F}{A} \)
  • \( \epsilon = \frac{\Delta L}{L} \text{ or } \frac{\Delta V}{V} \)
  • \( Y = \frac{\text{Stress}}{\text{Strain}} \)
  • \( K = -\frac{\Delta P}{\Delta V / V} \)
  • \( G = \frac{\text{Shear Stress}}{\text{Shear Strain}} \)
  • \( T = \frac{F}{l} \)
  • \( F = \eta A \frac{dv}{dx} \)
  • \( P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant} \)
  • \( Q = \frac{\pi P r^4}{8 \eta l} \)

8. Thermodynamics

  • \( \Delta Q = \Delta U + W \)
  • \( W = nRT \ln\left(\frac{V_f}{V_i}\right) \)
  • \( W = \frac{P_i V_i - P_f V_f}{\gamma - 1} \)
  • \( \gamma = \frac{C_p}{C_v} \)
  • \( PV^\gamma = \text{constant} \)
  • \( TV^{\gamma-1} = \text{constant} \)
  • \( \eta = 1 - \frac{T_2}{T_1} \)

9. Oscillations and Waves

  • \( x = A \sin(\omega t + \phi) \)
  • \( v = A \omega \cos(\omega t + \phi) \)
  • \( a = - \omega^2 x \)
  • \( T = 2\pi \sqrt{\frac{m}{k}} \)
  • \( T = 2\pi \sqrt{\frac{l}{g}} \)
  • \( \omega = \sqrt{\frac{k}{m}} \)
  • \( v = f \lambda \)
  • \( v = \sqrt{\frac{T}{\mu}} \)
  • \( v = \sqrt{\frac{B}{\rho}} \)
  • \( f' = f \left( \frac{v \pm v_o}{v \mp v_s} \right) \)

10. Electrostatics

  • \( F = \frac{k q_1 q_2}{r^2} \), \( k = \frac{1}{4\pi \epsilon_0} \)
  • \( \vec{E} = \frac{k q}{r^2} \hat{r} \)
  • \( V = \frac{k q}{r} \)
  • \( U = \frac{k q_1 q_2}{r} \)
  • \( C = \frac{Q}{V} \)
  • \( C = \frac{\epsilon_0 A}{d} \)
  • \( U = \frac{1}{2} C V^2 = \frac{Q^2}{2C} \)
  • \( \Phi_E = \frac{q}{\epsilon_0} \)

11. Current Electricity

  • \( V = IR \)
  • \( R = \frac{\rho l}{A} \)
  • \( R_{\text{eq}} = R_1 + R_2 + \dots \)
  • \( \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \)
  • \( P = VI = I^2 R = \frac{V^2}{R} \)
  • \( \sum I_{\text{in}} = \sum I_{\text{out}} \)
  • \( \sum V = 0 \)
  • \( \frac{R_1}{R_2} = \frac{R_3}{R_4} \)

12. Magnetic Effects of Current and Magnetism

  • \( d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \hat{r}}{r^2} \)
  • \( B = \frac{\mu_0 I}{2\pi r} \)
  • \( B = \frac{\mu_0 I}{2R} \)
  • \( B = \mu_0 n I \)
  • \( \vec{F} = I (\vec{l} \times \vec{B}) \)
  • \( \vec{F} = q (\vec{v} \times \vec{B}) + q \vec{E} \)
  • \( \vec{m} = I \vec{A} \)
  • \( \vec{\tau} = \vec{m} \times \vec{B} \)

13. Electromagnetic Induction and Alternating Currents

  • \( \mathcal{E} = -\frac{d\Phi_B}{dt} \), \( \Phi_B = \vec{B} \cdot \vec{A} \)
  • \( \mathcal{E} = -L \frac{di}{dt} \)
  • \( \mathcal{E}_2 = -M \frac{di_1}{dt} \)
  • \( V = V_0 \sin(\omega t) \), \( I = I_0 \sin(\omega t) \)
  • \( V_{\text{rms}} = \frac{V_0}{\sqrt{2}} \), \( I_{\text{rms}} = \frac{I_0}{\sqrt{2}} \)
  • \( X_L = \omega L \)
  • \( X_C = \frac{1}{\omega C} \)
  • \( Z = \sqrt{R^2 + (X_L - X_C)^2} \)
  • \( P_{\text{avg}} = V_{\text{rms}} I_{\text{rms}} \cos\phi \)

14. Optics

  • \( \angle i = \angle r \)
  • \( \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \)
  • \( \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \)
  • \( \frac{1}{f} = (\mu - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \)
  • \( m = \frac{h_i}{h_o} = \frac{v}{u} \)
  • \( n_1 \sin\theta_1 = n_2 \sin\theta_2 \)
  • \( \theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right) \)
  • \( \beta = \frac{\lambda D}{d} \)
  • \( d \sin\theta = n\lambda \)

15. Modern Physics

  • \( KE_{\text{max}} = h\nu - \phi \)
  • \( \lambda = \frac{h}{p} \)
  • \( r_n = \frac{n^2 h^2}{4\pi^2 m k Z e^2} \)
  • \( E_n = -\frac{13.6 Z^2}{n^2} \, \text{eV} \)
  • \( N = N_0 e^{-\lambda t} \)
  • \( T_{1/2} = \frac{\ln 2}{\lambda} \)
  • \( E = mc^2 \)
Download PDF

Practice Quizzes (Chapter Wise)

No comments:

Post a Comment